两向量叉乘的计算公式_向量运算(叉乘几何意义)

向量的叉乘,即求同时垂直两个向量的向量,即c垂直于a,同时c垂直于b(a与c的夹角为90°,b与c的夹角为90°)

c = a×b = (a.y*b.z-b.y*a.z , b.x*a.z-a.x*b.z , a.x*b.y-b.x*a.y)《两向量叉乘的计算公式_向量运算(叉乘几何意义)》

以上图为例a(1,0,0),b(0,1,0),c=a×b = (0,0,1)

叉乘的几何意义

|c|=|a×b|=|a| |b|sinα (α为a,b向量之间的夹角)

|c| = a,b向量构成的平行四边形的面积 (如下图所示的平行四边形)《两向量叉乘的计算公式_向量运算(叉乘几何意义)》

叉乘的拓展

1. 在一般的常识或者教科书中规定叉乘只有3d才拥有,其实2d也可以拓展出来一个叉乘形式,而且非常有用。

拓展方式:假设有两个2d向量a,b,我们直接把他们视为3d向量,z轴补0,那么这个时候的a,b向量的叉乘结果c,c.x=0,c.y=0,c.z=a.x*b.y-b.x*a.y,

这个时候可以吧2d的叉乘值定义为得到一个值,而不是得到一个向量,那么这个值k, k = c.z=a.x*b.y-b.x*a.y,我们可以通过这个k值得到很多有用的性质

1.a,b向量构成的平行四边形的面积。

2.如果k>0时,那么a正旋转到b的角度为<180°,如果k<0,那么a正旋转到b的角度为>180°,如果k=0 那么a,b向量平行。

    原文作者:weixin_39668470
    原文地址: https://blog.csdn.net/weixin_39668470/article/details/111798900
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞