利用K近邻算法与CNN(卷积神经网络)实现手写数字识别
K-近邻算法的三个要素
1、K值大小的选择(测试数据交叉验证)一般为3-10之间
2、距离的度量方法(欧式距离、曼哈顿距离)
3、分类决策规则(多数表决)
import numpy as np
def createDataSet():
group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
group, labels = createDataSet()
print('group:', group)
print('labels:', labels) # 输出数值
# 在 Jupyter Notebook 单元格中执行,下载并解压数据。
# 非Linux系统的可以提前下载,然后导入进去
!wget -nc "http://labfile.oss.aliyuncs.com/courses/777/digits.zip"
# 解压缩
!unzip -o digits.zip
def img2vector(filename):
# 创建向量
returnVect = np.zeros((1, 1024))
# 打开数据文件,读取每行内容
fr = open(filename)
for i in range(32):
# 读取每一行
lineStr = fr.readline()
# 将每行前 32 字符转成 int 存入向量
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j])
return returnVect
import operator
def classify0(inX, dataSet, labels, k):
"""
参数:
- inX: 用于分类的输入向量
- dataSet: 输入的训练样本集
- labels: 样本数据的类标签向量
- k: 用于选择最近邻居的数目
"""
# 获取样本数据数量
dataSetSize = dataSet.shape[0]
# 矩阵运算,计算测试数据与每个样本数据对应数据项的差值
diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
# sqDistances 上一步骤结果平方和
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
# 取平方根,得到距离向量
distances = sqDistances**0.5
# 按照距离从低到高排序
sortedDistIndicies = distances.argsort()
classCount = { }
# 依次取出最近的样本数据
for i in range(k):
# 记录该样本数据所属的类别
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# 对类别出现的频次进行排序,从高到低
sortedClassCount = sorted(
classCount.items(), key=operator.itemgetter(1), reverse=True)
# 返回出现频次最高的类别
return sortedClassCount[0][0]
group, labels = createDataSet()
classify0([0, 0], group, labels, 3)
from os import listdir
def handwritingClassTest():
# 样本数据的类标签列表
hwLabels = []
# 样本数据文件列表
trainingFileList = listdir('digits/trainingDigits')
m = len(trainingFileList)
# 初始化样本数据矩阵(M*1024)
trainingMat = np.zeros((m, 1024))
# 依次读取所有样本数据到数据矩阵
for i in range(m):
# 提取文件名中的数字
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
# 将样本数据存入矩阵
trainingMat[i, :] = img2vector(
'digits/trainingDigits/%s' % fileNameStr)
# 循环读取测试数据
testFileList = listdir('digits/testDigits')
# 初始化错误率
errorCount = 0.0
mTest = len(testFileList)
# 循环测试每个测试数据文件
for i in range(mTest):
# 提取文件名中的数字
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
# 提取数据向量
vectorUnderTest = img2vector('digits/testDigits/%s' % fileNameStr)
# 对数据文件进行分类
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
# 打印 K 近邻算法分类结果和真实的分类
print("测试样本 %d, 分类器预测: %d, 真实类别: %d" %
(i+1, classifierResult, classNumStr))
# 判断K 近邻算法结果是否准确
if (classifierResult != classNumStr):
errorCount += 1.0
# 打印错误率
print("\n错误分类计数: %d" % errorCount)
print("\n错误分类比例: %f" % (errorCount/float(mTest)))
handwritingClassTest()